
Google Maps V3 API

CodeIgniter Library

Author: BIOSTALL (Steve Marks)

Website: http://biostall.com

Link: http://biostall.com/codeigniter-google-maps-v3-api-library

Email: info@biostall.com

Introduction

This CodeIgniter library provides an easy way to display simple maps within an application/website

using the Google Maps V3 API. It allows maps to be shown, including customisable markers,

polylines, polygons, circles, rectangles, ground overlays and more with just a few lines of code.

Directions can also be drawn, both onto the map, and textual directions written to an element on

the page. The library also integrates with Google Places to show places of interest.

Installation

In order to use the library you will need to download the Googlemaps.php file and place it in your

‘application/libraries’ directory. Following the demonstrations and documentation below you will

then be able to begin creating maps right away.

The Basics

Once the installation instructions above are complete there are just two things we need to do to in

order to create a map. The first is to amend our controller in order to initialize and customise our

output, and the second is to include two lines of code in our view where we want the map to be

displayed:

The Controller

The example below shows how to create a very simple map with all the default controls/properties

and no overlays/markers:

// Load the library

$this->load->library('googlemaps');

// Initialize our map. Here you can also pass in additional parameters for customising the map (see below)

$this->googlemaps->initialize();

// Create the map. This will return the Javascript to be included in our pages <head></head> section and the HTML code to be

// placed where we want the map to appear.

$data['map'] = $this->googlemaps->create_map();

// Load our view, passing the map data that has just been created

$this->load->view('my_view', $data);

The View

There are two things we need to add to our view. The first is the Javascript which should be placed

in the <head> section of your website as follows:

<head>

<?php echo $map['js']; ?>

</head>

The next thing is the actual map. This should be placed where you want the map to appear as

follows:

<?php echo $map['html']; ?>

Customising the Map

The library allows you to adjust the way your map appears by passing in additional values in a

$config array to $this->googlemaps->initialize($config). These are as follows:

Name Type Default Possible Values Description

$adsense boolean FALSE TRUE, FALSE Whether Google Adsense For
Content should be enabled

$adsenseChannelNumber string The Adsense channel number
for tracking the performance of
this AdUnit

$adsenseFormat string HALF_BANNER "BANNER", "BUTTON",
"HALF_BANNER",
"LARGE_RECTANGLE",
"LEADERBOARD",
"MEDIUM_RECTANGLE",
"SKYSCRAPER",
"SMALL_RECTANGLE",
"SMALL_SQUARE", "SQUARE",
"VERTICAL_BANNER",
"WIDE_SKYSCRAPER"

The format of the AdUnit

$adsensePosition string TOP_CENTER The position of the AdUnit

$adsensePublisherID string Your Google AdSense publisher
ID

$backgroundColor string A hex colour value The background color shown
when tiles have not yet loaded
as the user pans

$bicyclingOverlay boolean FALSE TRUE, FALSE If set to TRUE will overlay
bicycling information (ie. bike
paths and suggested routes)
onto the map by default

$center string "37.4419, -122.1419" A latitude/longitude coordinate
OR an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long. Other possible value is
“auto” (see description).

Sets the default center location
of the map. You can also center
on the current users location
using available geocoding
services. Simply set this to
“auto”.

$cluster boolean FALSE TRUE, FALSE Whether to cluster markers

$clusterGridSize integer 60 The grid size of a cluster in
pixels

$clusterMaxZoom integer The maximum zoom level that a
marker can be part of a cluster

$clusterZoomOnClick boolean TRUE TRUE, FALSE Whether the default behaviour of
clicking on a cluster is to zoom
into it

$clusterAverageCenter boolean FALSE TRUE, FALSE Whether the center of each
cluster should be the average of
all markers in the cluster

$clusterMinimumClusterSi
ze

integer 2 The minimum number of
markers to be in a cluster before
the markers are hidden and a
count is shown

$directions boolean FALSE Whether or not the map will be
used to show directions

$directionsChanged string JavaScript to perform when
directions are dragged.
$directionsDraggable must be

set to true in order to use this
parameter

$directionsDraggable boolean FALSE TRUE, FALSE Whether or not directions on the
map are draggable

$directionsStart string A latitude/longitude coordinate
OR an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The starting location of the
directions

$directionsEnd string A latitude/longitude coordinate
OR an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The destination point of the
directions

$directionsDivID string An element's ID on the page
where textual directions will be
output to. Leave blank if not
required

$directionsMode string “DRIVING” “DRIVING”, “WALKING”,
“BICYCLING” (US only)

The vehicle/mode of transport to
show directions for

$directionsAvoidTolls boolean FALSE TRUE, FALSE Whether or not directions should
avoid tolls

$directionsAvoidHighways boolean FALSE TRUE, FALSE Whether or not directions should
avoid highways

$disableDefaultUI boolean FALSE TRUE, FALSE If set to TRUE will hide the
default controls (ie. zoom, scale)

$disableMapTypeControl boolean FALSE TRUE, FALSE If set to TRUE will hide the
MapType control (ie. Map,
Satellite, Hybrid, Terrain)

$disableNavigationControl boolean FALSE TRUE, FALSE If set to TRUE will hide the
Navigation control (ie. zoom
in/out, pan)

$disableScaleControl boolean FALSE TRUE, FALSE If set to TRUE will hide the Scale
control

$disableStreetViewControl boolean FALSE TRUE, FALSE If set to TRUE will hide the
Street View control

$disableDoubleClickZoom boolean FALSE TRUE, FALSE If set to TRUE will disable
zooming when a double click
occurs

$draggable boolean TRUE TRUE, FALSE If set to FALSE will prevent the
map from being dragged around

$draggableCursor string The name or url of the cursor to
display on a draggable object

$draggingCursor string The name or url of the cursor to
display when an object is
dragging

$geocodeCaching boolean FALSE TRUE, FALSE If set to TRUE will cache any
geocode requests made when
an address is used instead of a
lat/long. Requires database
table to be created (see below).

$https boolean FALSE TRUE, FALSE If set to TRUE will load the
Google Maps JavaScript API
over HTTPS, allowing you to
utilize the API within your
HTTPS secure application

$navigationControlPositio
n

string “BOTTOM”, “BOTTOM_LEFT”,
“BOTTOM_RIGHT”, “LEFT”,
“RIGHT”, “TOP”, “TOP_LEFT”,
“TOP_RIGHT”

The position of the Navigation
control

$keyboardShortcuts boolean TRUE TRUE, FALSE If set to FALSE will disable to
map being controlled via the
keyboard

$jsfile string Set this to the path of an
external JS file if you wish the
Javascript to be placed in a file
rather than output directly into
the <head></head> section. The
library will try to create the file if
it does not exist already. Please
ensure the destination file is
writeable

$kmlLayerURL string A URL to publicly available KML
or GeoRSS data for displaying
geographic information

$kmlLayerPreserveViewpo
rt

boolean FALSE TRUE, FALSE Specifies whether the map
should be adjusted to the
bounds of the KmlLayer's
contents. By default the map is
zoomed and positioned to show
the entirety of the layer's
contents

$loadAsynchronously boolean FALSE TRUE, FALSE Load the map and API
asynchronously once the page
has loaded

$map_div_id string “map_canvas” The ID of the <div></div> output
that contains the map

$map_height string “450px” The height of the map container.
Any units (ie ‘px’) can be used. If
no units are provided ‘px’ will be
presumed

$map_name string “map” The JS reference to the map.
Currently not used but to be
used in the future when multiple
maps are supported

$map_type string “ROADMAP” “HYBRID”, “ROADMAP”,
“SATELLITE”, “TERRAIN”,
“STREET”

The default MapType.

$map_types_available array "HYBRID", "ROADMAP",
"SATELLITE", "TERRAIN"

An array of map types to show
available for selection on the
map

$map_width string “100%” The width of the map container.
Any units (ie ‘px’) can be used. If
no units are provided ‘px’ will be
presumed

$mapTypeControlPosition string “BOTTOM”, “BOTTOM_LEFT”,
“BOTTOM_RIGHT”, “LEFT”,
“RIGHT”, “TOP”, “TOP_LEFT”,
“TOP_RIGHT”

The position of the MapType
control

$mapTypeControlStyle string "DROPDOWN_MENU",
"HORIZONTAL_BAR"

The style of the MapType control

$minzoom integer The minimum zoom level which
will be displayed on the map

$maxzoom integer The maximum zoom level which
will be displayed on the map

$minifyJS boolean FALSE TRUE, FALSE If set to TRUE will run the
JavaScript created by the library
through Jsmin.php (this file,
available in the repository, and
PHP5+ required) to minify the
code produced

$noClear boolean FALSE TRUE, FALSE If TRUE do not clear the
contents of the map div

$onboundschanged string The JavaScript action to perform
when the viewport bounds have
changed

$oncenterchanged string The JavaScript action to perform
when the map center property
changes

$onclick string The JavaScript action to perform
when the map is clicked

$ondblclick string The JavaScript action to perform
when the map is double-clicked

$ondrag string The JavaScript action to perform
while the map is dragged

$ondragend string The JavaScript action to perform
when the user stops dragging
the map

$ondragstart string The JavaScript action to perform
when the user starts dragging
the map

$onidle string The JavaScript action to perform
when the map becomes idle
after panning or zooming

$onload string The JavaScript action to perform
when the map first loads. This
library hi-jacks the window.load
event so add any bespoke code
using this option

$onmousemove string The JavaScript action to perform
when the user's mouse moves
over the map container

$onmouseout string The JavaScript action to perform
when the user's mouse exits the
map container

$onmouseover string The JavaScript action to perform
when the user's mouse enters
the map container

$onresize string The JavaScript action to perform
when the maps div changes size

$onrightclick string The JavaScript action to perform
when the map is right-clicked

$ontilesloaded string The JavaScript action to perform
when the visible tiles have
finished loading

$onzoomchanged string The JavaScript action to perform
when the maps zoom property
changes

$panoramio boolean FALSE TRUE, FALSE If TRUE will add photos from
Panoramio as a layer to your
maps as a series of large and
small photo icons

$panoramioTag string Restrict the set of Panoramio
photos shown to those matching
a certain textual tag

$panoramioUser string Any valid Panoramio User ID Restrict the set of Panoramio
photos shown to those matching
a particular user

$places boolean FALSE TRUE, FALSE Whether or not the map will be
used to show places

$placesLocation string A latitude/longitude coordinate
OR an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

A point on the map if the search
for places is based around a
central point

$placesRadius integer 0 The radius (in meters) if search
is based on a central position

$placesLocationSW string A latitude/longitude coordinate
OR an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

If preferring to search within
bounds the South-West position

$placesLocationNE string A latitude/longitude coordinate
OR an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

If preferring to search within
bounds the North-East position

$placesTypes array For a full list of accepted types
see:
http://code.google.com/apis/map
s/documentation/places/supporte
d_types.html

An array of types of places to
search for

$placesName string A term to be matched against
when searching for places to
display on the map

$region string Country code top-level domain
(eg “uk”) within which to search.
Useful if supplying addresses
rather than lat/longs

$scaleControlPosition string “BOTTOM”, “BOTTOM_LEFT”,
“BOTTOM_RIGHT”, “LEFT”,
“RIGHT”, “TOP”, “TOP_LEFT”,
“TOP_RIGHT”

The position of the Scale control

$scrollwheel boolean TRUE TRUE, FALSE If set to FALSE will disable
zooming by scrolling of the
mouse wheel

$sensor boolean FALSE TRUE, FALSE Set to TRUE if being used on a
device that can detect a users
location

$streetViewAddressContro
l

boolean TRUE TRUE, FALSE If set to FALSE will hide the
Address control

$streetViewAddressPositio
n

string “BOTTOM”, “BOTTOM_LEFT”,
“BOTTOM_RIGHT”, “LEFT”,
“RIGHT”, “TOP”, “TOP_LEFT”,
“TOP_RIGHT”

The position of the Address
control, eg. 'TOP_LEFT'

$streetViewControlPositio
n

string “BOTTOM”, “BOTTOM_LEFT”,
“BOTTOM_RIGHT”, “LEFT”,
“RIGHT”, “TOP”, “TOP_LEFT”,
“TOP_RIGHT”

The position of the Street View
control

$streetViewCloseButton boolean FALSE TRUE, FALSE If set to TRUE will show the
close button in the top right. The

close button allows users to
return to the aerial map

$streetViewLinksControl boolean TRUE TRUE, FALSE If set to FALSE will hide the
Links control

$streetViewPanControl boolean TRUE TRUE, FALSE If set to FALSE will hide the Pan
control

$streetViewPanPosition string “BOTTOM”, “BOTTOM_LEFT”,
“BOTTOM_RIGHT”, “LEFT”,
“RIGHT”, “TOP”, “TOP_LEFT”,
“TOP_RIGHT”

The position of the Scale control,
eg. 'TOP_RIGHT'

$streetViewPovHeading integer 0 0 to 359 The Street View camera heading
in degrees relative to true north.
True north is 0, east is 90, south
is 180, west is 270

$streetViewPovPitch integer 0 90 to -90 The Street View camera pitch in
degrees, relative to the street
view vehicle. Directly upwards is
90, Directly downwards is -90.

$streetViewPovZoom integer 0 The Street View zoom level.
Fully zoomed-out is level 0,
zooming in increases the zoom
level.

$streetViewZoomControl boolean TRUE TRUE, FALSE If set to FALSE will hide the
Zoom control

$streetViewZoomPosition string “BOTTOM”, “BOTTOM_LEFT”,
“BOTTOM_RIGHT”, “LEFT”,
“RIGHT”, “TOP”, “TOP_LEFT”,
“TOP_RIGHT”

The position of the Scale control,
eg. 'TOP_RIGHT'

$streetViewZoomStyle string "SMALL", "LARGE" The size of the Street View

zoom control.

$styles array An array of styles used to colour
aspects of the map and turn
points of interest on and off.
Gets converted to a JSON array.
See the website demonstration
for clarification on how this
should be implemented.

$stylesAsMapTypes boolean FALSE TRUE, FALSE If applying styles, whether to
apply them to the default map or
add them as additional map
types

$stylesAsMapTypesDefaul
t

string If $stylesAsMapTypes is true the
default style. Should contain the
'Name' of the style

$trafficOverlay boolean FALSE TRUE, FALSE If set to TRUE will overlay traffic
information onto the map by
default

$zoom string “13” “0” (zoomed out) – “18” (zoomed
in), “auto”

The default zoom level of the
map. If set to “auto” will auto-
zoom/center to fit in all visible
markers. If “auto”, also overrides
the $center parameter

$zoomControlPosition string “BOTTOM”, “BOTTOM_LEFT”,
“BOTTOM_RIGHT”, “LEFT”,
“RIGHT”, “TOP”, “TOP_LEFT”,
“TOP_RIGHT”

The position of the Zoom control

$zoomControlStyle string "SMALL", "LARGE" The style of the Zoom control

Adding Markers

The library also allows you to add multiple markers to the map at specified positions. To add a

single marker we can add the following code BEFORE the create_map() function is called:

// Set the marker parameters as an empty array. Especially important if we are using multiple markers

$marker = array();

// Specify an address or lat/long for where the marker should appear.

$marker[' position '] = 'Crescent Park, Palo Alto';

// Once all the marker parameters have been specified lets add the marker to our map

this->googlemaps->add_marker($marker);

To create multiple markers simply duplicate the above code the required amount of times.

Like the map itself, we can also specify a number of parameters for individual markers to change

how and where they appear. These parameters are as follows:

Name Type Default Possible Values Description

$position string A latitude/longitude coordinate OR
an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The position at which the marker
will appear

$infowindow_content string If not blank, creates an infowindow
(aka bubble) with the content
provided. Can be plain text or
HTML

$animation string “DROP”, “BOUNCE” Animate the marker so it exhibits
dynamic movement

$clickable boolean TRUE TRUE, FALSE Defines if the marker is clickable

$cursor string The name or url of the cursor to
display on hover

$draggable boolean FALSE TRUE, FALSE Defines if the marker is draggable

$flat boolean FALSE TRUE, FALSE If set to TRUE will no display a
shadow beneath the icon

$icon string The name or url of the icon to use
for the marker

$onclick string JavaScript performed when a
marker is clicked

$ondblclick string JavaScript performed when a
marker is double-clicked

$ondrag string JavaScript repeatedly performed
while the marker is being dragged

$ondragstart string JavaScript performed when a
marker is started to be dragged

$ondragend string JavaScript performed when a
draggable marker is dropped

$onmousedown string JavaScript performed when a
mousedown event occurs on a
marker

$onmouseout string JavaScript performed when the
mouse leaves the area of the
marker icon

$onmouseover string JavaScript performed when the
mouse enters the area of the
marker icon

$onmouseup string JavaScript performed when a
mouseup event occurs on a
marker

$onrightclick string JavaScript performed when a right-
click occurs on a marker

$raiseondrag TRUE TRUE, FALSE If FALSE, disables the raising and
lowering of the icon when a marker
is being dragged

$shadow string The name or url of the icon’s
shadow

$title string The tooltip text to show on hover

$visible boolean TRUE TRUE, FALSE Defines if the marker is visible by
default

$zIndex int The zIndex of the marker. If two
markers overlap, the marker with
the higher $zIndex will appear on
top

Adding Polylines

The library also allows you to add polylines to the map at specified positions. To add a single

polyline we can add the following code BEFORE the create_map() function is called:

// Set the polyline parameters as an empty array. Especially important if we are using multiple polylines

$polyline = array();

// Specify an array of addresses or lat/longs for where the polyline points should appear.

$polyline['points'] = array('37.429, -122.1319', 'Crescent Park, Palo Alto', '37.4419, -122.1219');

// Once all the polyline parameters have been specified lets add the polyline to our map

$this->googlemaps->add_polyline($polyline);

To create multiple polylines simply duplicate the above code the required amount of times.

We can also specify a number of parameters for individual polylines to change how and where

they appear. These parameters are as follows:

Name Type Default Possible Values Description

$points array An array of latitude/longitude
coordinates OR addresses, or a
mixture of both. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The position at which the polyline
points will appear

$strokeColor string “#FF0000” A hex colour value The colour of the polyline

$strokeOpacity string “1.0” 0 (transparent) – 1.0
(solid/opaque)

The opacity of the polyline

$strokeWeight string “2” The thickness of the polyline

$clickable boolean TRUE TRUE, FALSE Defines if the polyline is clickable

$onclick string JavaScript performed when a
polyline is clicked

$ondblclick string JavaScript performed when a
polyline is double-clicked

$onmousedown string JavaScript performed when a
mousedown event occurs on a
polyline

$onmousemove string JavaScript performed when the
mouse moves in the area of the
polyline

$onmouseout string JavaScript performed when the
mouse leaves the area of the
polyline

$onmouseover string JavaScript performed when the
mouse enters the area of the
polyline

$onmouseup string JavaScript performed when a
mouseup event occurs on a
polyline

$onrightclick string JavaScript performed when a right-
click occurs on a polyline

$zIndex int The zIndex of the polyline. If two
polylines overlap, the polyline with
the higher $zIndex will appear on
top

Adding Polygons

The library also allows you to add polygons to the map at specified positions. To add a single

polygon we can add the following code BEFORE the create_map() function is called:

// Set the polygon parameters as an empty array. Especially important if we are using multiple polygons

$polygon = array();

// Specify an array of addresses or lat/longs for where the polygon points should appear.

// NOTE: The first and last elements in the array should be the same to complete the polygon

$polygon['points'] = array('37.425, -122.1321', '37.4422, -122.1622', '37.4412, -122.1322', '37.425, -122.1021');

// Once all the polygon parameters have been specified lets add the polygon to our map

$this->googlemaps->add_polygon($polygon);

To create multiple polygons simply duplicate the above code the required amount of times.

We can also specify a number of parameters for individual polygons to change how and where

they appear. These parameters are as follows:

Name Type Default Possible Values Description

$points array An array of latitude/longitude
coordinates OR addresses, or a
mixture of both. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The position at which the polygon
points will appear.

NOTE: The first and last elements
of the array must be the same

$strokeColor string “#FF0000” A hex colour value The colour of the polygon border

$strokeOpacity string “0.8” 0 (transparent) – 1.0
(solid/opaque)

The opacity of the polygon border

$strokeWeight string “2” The thickness of the polygon
border

$fillColor string “#FF0000” A hex colour value The colour of the polygon

$fillOpacity string “0.3” 0 (transparent) – 1.0
(solid/opaque)

The opacity of the polygon

$clickable boolean TRUE TRUE, FALSE Defines if the polygon is clickable

$onclick string JavaScript performed when a
polygon is clicked

$ondblclick string JavaScript performed when a
polygon is double-clicked

$onmousedown string JavaScript performed when a
mousedown event occurs on a
polygon

$onmousemove string JavaScript performed when the
mouse moves in the area of the
polygon

$onmouseout string JavaScript performed when the
mouse leaves the area of the
polygon

$onmouseover string JavaScript performed when the
mouse enters the area of the
polygon

$onmouseup string JavaScript performed when a
mouseup event occurs on a
polygon

$onrightclick string JavaScript performed when a right-
click occurs on a polygon

$zIndex int The zIndex of the polygon. If two
polygons overlap, the polygon with
the higher $zIndex will appear on
top

Adding Circles

The library also allows you to add circles to the map at specified positions. To add a single circle

we can add the following code BEFORE the create_map() function is called:

// Set the circle parameters as an empty array. Especially important if we are using multiple circles

$circle = array();

// Specify the center and radius (in metres) of the circle

$circle['center'] = '37.459, -122.1319';

$circle['radius'] = '1000';

// Once all the circle parameters have been specified lets add the circle to our map

$this->googlemaps->add_circle($circle);

To create multiple circles simply duplicate the above code the required amount of times.

We can also specify a number of parameters for individual circles to change how and where they

appear. These parameters are as follows:

Name Type Default Possible Values Description

$center string A latitude/longitude coordinate OR
an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The position at which the circle will
appear

$radius integer 0 The circle radius (in metres).

$strokeColor string “#FF0000” A hex colour value The colour of the circle border

$strokeOpacity string “1.0” 0 (transparent) – 1.0
(solid/opaque)

The opacity of the circle border

$strokeWeight string “2” The thickness of the circle border

$fillColor string “#FF0000” A hex colour value The colour of the circle

$fillOpacity string “0.3” 0 (transparent) – 1.0
(solid/opaque)

The opacity of the circle

$clickable boolean TRUE TRUE, FALSE Defines if the circle is clickable

$onclick string JavaScript performed when a circle
is clicked

$ondblclick string JavaScript performed when a circle
is double-clicked

$onmousedown string JavaScript performed when a
mousedown event occurs on a
circle

$onmousemove string JavaScript performed when the
mouse moves in the area of the
circle

$onmouseout string JavaScript performed when the
mouse leaves the area of the
circle

$onmouseover string JavaScript performed when the
mouse enters the area of the
circle

$onmouseup string JavaScript performed when a
mouseup event occurs on a
circle

$onrightclick string JavaScript performed when a right-
click occurs on a circle

$zIndex int The zIndex of the circle. If two
circles overlap, the circle with the
higher $zIndex will appear on top

Adding Rectangles

The library also allows you to add rectangles to the map at specified positions. To add a single

rectangle we can add the following code BEFORE the create_map() function is called:

// Set the rectangle parameters as an empty array. Especially important if we are using multiple rectangles

$rectangle = array();

// Specify the bounds (south-west and north-east positions) of the rectangle

$rectangle['positionSW'] = '37.459, -122.1319';

$rectangle['positionNE'] = '37.459, -122.2244';

// Once all the rectangle parameters have been specified lets add the rectangle to our map

$this->googlemaps->add_rectangle($rectangle);

To create multiple rectangles simply duplicate the above code the required amount of times.

We can also specify a number of parameters for individual rectangles to change how and where

they appear. These parameters are as follows:

Name Type Default Possible Values Description

$positionSW string A latitude/longitude coordinate OR
an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The South-West position at which
the rectangle will appear

$positionNE string A latitude/longitude coordinate OR
an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The North-East position at which
the rectangle will appear

$strokeColor string “#FF0000” A hex colour value The colour of the rectangle border

$strokeOpacity string “1.0” 0 (transparent) – 1.0
(solid/opaque)

The opacity of the rectangle border

$strokeWeight string “2” The thickness of the rectangle
border

$fillColor string “#FF0000” A hex colour value The colour of the rectangle

$fillOpacity string “0.3” 0 (transparent) – 1.0
(solid/opaque)

The opacity of the rectangle

$clickable boolean TRUE TRUE, FALSE Defines if the rectangle is clickable

$onclick string JavaScript performed when a
rectangle is clicked

$ondblclick string JavaScript performed when a
rectangle is double-clicked

$onmousedown string JavaScript performed when a
mousedown event occurs on a
rectangle

$onmousemove string JavaScript performed when the
mouse moves in the area of the
rectangle

$onmouseout string JavaScript performed when the
mouse leaves the area of the
rectangle

$onmouseover string JavaScript performed when the
mouse enters the area of the
rectangle

$onmouseup string JavaScript performed when a
mouseup event occurs on a
rectangle

$onrightclick string JavaScript performed when a right-
click occurs on a rectangle

$zIndex int The zIndex of the rectangle. If two
rectangles overlap, the rectangle
with the higher $zIndex will appear
on top

Adding Ground Overlays

The library also allows you to add ground overlays (ie. images) to the map at specified positions.

The image will automatically resize to match the South-West and North-East positions provided.

To add a single ground overlay we can add the following code BEFORE the create_map() function

is called:

// Set the overlay parameters as an empty array. Especially important if we are using multiple overlays

$overlay = array();

// Specify the bounds (south-west and north-east positions) of the ground overlay

$overlay['image'] = 'http://www.mydomain.com/images/test.jpg';

$overlay['positionSW'] = '37.459, -122.1319';

$overlay['positionNE'] = '37.459, -122.2244';

// Once all the overlay parameters have been specified lets add the overlay to our map

$this->googlemaps->add_ground_overlay($overlay);

To create multiple overlays simply duplicate the above code the required amount of times.

We can also specify a number of parameters for individual overlays to change how and where

they appear. These parameters are as follows:

Name Type Default Possible Values Description

$image string A valid URL A URL to the image that should be
used as the overlay

$positionSW string A latitude/longitude coordinate OR
an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The South-West position at which
the overlay will appear

$positionNE string A latitude/longitude coordinate OR
an address. If an address is
supplied the Google geocoding
service will be used to return a
lat/long.

The North-East position at which
the overlay will appear

$clickable boolean TRUE TRUE, FALSE Defines if the overlay is clickable

$onclick string JavaScript performed when an
overlay is clicked

Caching Geocoding Requests

A geocode request is made from within the library whenever an address or textual location is used

instead of a latitude/longitude co-ordinate. Whether it be centering the map or adding a marker,

each time one of these requests is required the library goes off to a service provided by Google

and obtains the required information.

There are two benefits to caching these types of request:

1) Speed. Getting the latitude and longitude from a database for a certain location will be

quicker than going off to ask Google each time.

2) Request Limitations. Google allow you make 2,500 geocode requests per day. Caching

helps massively if you're using this library on a high traffic site, or are frequently requesting

details for the same location.

To use the caching option provided by the library you need an established database connection

and to follow the steps below:

1) Create the database table. Simply copy and paste the SQL statement below to do this:

CREATE TABLE IF NOT EXISTS `geocoding` (

 `address` varchar(255) NOT NULL DEFAULT '',

`latitude` float DEFAULT NULL,

 `longitude` float DEFAULT NULL,

 PRIMARY KEY (`address`)

)

2) Activate the library configuration option $geocodeCaching by setting it to TRUE:

$config['geocodeCaching'] = TRUE;

$this->googlemaps->initialize($config);

Minifying Javascript

The result of this library is a bunch of Javascript that, based on other options, is either output into

the HTML or wrote to a JS file. When adding lots of markers, overlays and other functionality to the

map this JavaScript can get quite large, in which case we recommend that you minify this code.

To perform minimisation of the Javascript produced by the library you will need to download the file

Jsmin.php that is available in the repository and place it in the 'libraries' folder of your application

directory.

Then simply activate this feature by setting the library configuration option $minifyJS by setting it

to TRUE:

$config['minifyJS'] = TRUE;

$this->googlemaps->initialize($config);

Adding Markers From Database Co-ordinates

A common question I get asked is “How can I loop through a set of co-ordinates and add a marker

to the map for each record?”. As a result I have added this section of the documentation to provide

an example of how to accomplish this.

The Database

For the scenario listed below we'll imagine we've got a very simple database table with just two

columns; lat and lng. The MySQL for creating this table would look something like so:

CREATE TABLE `coords` (

`lat` float DEFAULT NULL,

 `lng` float DEFAULT NULL

)

No doubt your table will be named different, have different named columns and more fields. As a

result please ensure these differences are reflected if copying the code below.

The Model

Now that we've got our database set up we'll need a way to get these co-ordinates out so that we

can use them later on on the map. In sticking to the conventional MVC (Model-View-Controller)

structure we'll do this in a model.

For this example we'll create a model called 'map_model.php' that might look something like so:

<?php

class Map_model extends CI_Model {

 function __construct()

 {

 parent::__construct();

 }

 function get_coordinates()

 {

 $return = array();

 $this->db->select("lat,lng");

 $this->db->from("coords");

 $query = $this->db->get();

 if ($query->num_rows()>0) {

 foreach ($query->result() as $row) {

 array_push($return, $row);

 }

 }

 return $return;

 }

}

In the model above we are getting all latitude and longitude coordinates from our table. We're then

executing the query and looping through the results, pushing each one to an array variable called

$return. The resulting output is an array that we'll use in a little while containing all the data we

need to start plotting markers.

The Controller

Nearly there... The final step is to take the array of co-ordinates that we generated in our model

and plot them on the map using this library. Our sample controller, in this case called 'map.php',

would look something like so:

<?php if (! defined('BASEPATH')) exit('No direct script access allowed');

class Map extends CI_Controller {

 function __construct()

 {

 parent::__construct();

 }

 function index()

 {

 // Load the library

 $this->load->library('googlemaps');

 // Load our model

 $this->load->model('map_model', '', TRUE);

 // Initialize the map, passing through any parameters

 $config['center'] = '1600 Amphitheatre Parkway in Mountain View, Santa Clara County, California';

 $config['zoom'] = "auto";

 $this->googlemaps->initialize($config);

 // Get the co-ordinates from the database using our model

 $coords = $this->map_model->get_coordinates();

 // Loop through the coordinates we obtained above and add them to the map

 foreach ($coords as $coordinate) {

 $marker = array();

 $marker['position'] = $coordinate->lat.','.$coordinate->lng;

 $this->googlemaps->add_marker($marker);

 }

 // Create the map

 $data = array();

 $data['map'] = $this->googlemaps->create_map();

 // Load our view, passing through the map data

 $this->load->view('map_view', $data);

 }

}

All that's left to do now is to generate your view. I'll leave that bit to you ;)

Tracking Markers Externally

Aside from the library returning the Javascript and HTML required for the map, there is a third set

of data returned as a result of calling the create_map() function.

This array, called 'markers', contains information about the markers that were added to the map.

This information includes the markers' ID for use in custom JavaScript, the latitude and longitude,

and the title if one was set.

An example for obtaining this array can be seen below:

$this->load->library('googlemaps');

$this->googlemaps->initialize($config);

$marker = array();

$marker['position'] = '1600 Amphitheatre Parkway in Mountain View, Santa Clara County, California';

$marker['title'] = 'A marker title';

$this->googlemaps->add_marker($marker);

$data['map'] = $this->googlemaps->create_map();

print_r($data['map']['markers']);

The above would output the marker information something like so:

Array(

 [marker_0] => Array (

 [latitude] => 37.4213068

 [longitude] => -122.08529

 [title] => A marker title

)

)

In the above example 'marker_0' is the ID of the marker should you wish to reference this in

JavaScript outside of the library.

Need Help?

To leave feedback, ask questions or report bugs please contact me at info@biostall.com or leave a

comment at http://biostall.com.

Are You Using This Library?

If you're using this library I'd like to hear from you as I'm looking to provide some real life examples

of it's use on day-to-day websites. Included is the chance to get a one-way link to your site (yes,

for free!). Email me at info@biostall.com if you have an example I can look at. Thanks.

